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Abstract 

 

We create a measurement technique and easy to interpret metrics to be used in development 

of new oscillators specifically for applications in which the oscillator’s power is turned on and 

off.  This is useful in predicting the performance in, for example, the frequency-difference-of-

arrival (FDOA) geolocation technique, which is used to monitor and track an emitter’s location 

by observing its Doppler frequency shifts at a set of receivers. To conserve energy, FDOA 

applications compute Doppler tracks from an emitter that is powered “on” or measured for 

short periods (τon) after a long “off” period, called the “stride” interval (τs).  For lowest size, 

weight, and power (SWaP) and lowest phase noise and best frequency stability, evaluations are 

focused on Oven-Controlled Crystal Oscillators (OCXO’s) and Temperature-Controlled Crystal 

Oscillators (TCXO’s).  For illustration, we use τon = 3 s and τs = 60 s.  This shows the need to 

consider the dynamic behavior during the short 3 s average frequency measurements as well as 

the 60 s sampling interval between measurements. Dynamic Allan Deviation (ADEV) does not 

accurately capture different noise types for such a short 3 s sample, so we propose using 

Dynamic ThêoH which characterizes the oscillator at power-on more accurately.  Since RMS 

frequency differences vs. sampling time-intervals in multiples of 60 s cannot be used in place of 

the ADEV, we regard frequency differences as an uncertainty on an oscillator's predicted 

frequency, not on a mean frequency. This mimics ADEV and we can distinguish the dominant 

component of frequency prediction due to random-walk FM (RWFM) or an even more 

divergent noise type.  This paper: (1) describes a measurement setup to obtain low-noise, fast 

fractional-frequency, time-series measurements, (2) motivates and illustrates Dynamic ThêoH, 

the hybrid of ADEV and THEO, for τon = 3 s, (3) constructs a statistic called Y(τon,τs,) which 

estimates a τs  = 60 s frequency prediction error, and (4) transforms 3 s time-series 

measurements to phase noise L(f) for field applications and evaluations. 

 

 

I. INTRODUCTION AND SUMMARY 
 

We characterize an oscillating signal for applications where the oscillator is either only “on” or measured 

for short periods on) during long, periodic or “stride” intervals s), during which the oscillator is off for 

s-on seconds.  A statistic called Psi-deviation, ons), is created, which estimates the frequency 

prediction error using the last frequency measurement.  The variance of the prediction is 

ons), which 

is a time-averaged, two-sample variance and provides desirable properties similar to the Allan variance.  

The application is the tracking of an emitter using frequency difference of arrival (FDOA).  While the 

emitter’s oscillating signal is on and transmitting (or being measured), receivers calculate tracks based on 

Doppler shifts that in turn provide a navigation solution.  On a 2-dimensional plane, circular error 

probability (CEP) due to the emitter’s oscillator noise is minimized given low enough phase noise and 

frequency error during the interval on  Because on is short, and we want to optimally characterize 
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frequency stability, we compute ThêoH [1].  Using 10 sequential segments of on, we display each 

segment’s ThêoH in a “waterfall” or surface plot, to characterize the oscillator’s turn-on transient.  

Dubbed “Dynamic ThêoH”, or DThêoH, we can compare how long it takes different oscillators to obtain 

consistent ThêoH.  Oscillators having low enough cost, size, weight, and power appropriate for power 

cycling are OCXOs and TCXOs, or oven and temperature compensated MEMs oscillators, respectively. 

Section II details the measurement setup and an example of DThêoH for an OCXO.  Section III motivates 

and develops frequency prediction error ons).  Section IV derives the relationship between -

variance in the time domain and spectral density Sy(f).  Sections V and VI show time-domain and 

frequency-domain measurements, respectively, comparing an OCXO and TCXO in limited live-time 

operation. 

 

II. DYNAMIC THÊOH WHILE OSCILLATOR IS ON 

We want to capture oscillator turn-on frequency stability and establish the dynamic ADEV as a useful 

format for characterizing the oscillator’s behavior [2].  ThêoH is preferred rather than ADEV when an 

oscillator is on for only a short period compared to its off-time.  ThêoH is a hybrid (hence the “H”) of 

ADEV for short-term averaging times plotted with a bias-removed version of Thêo1, called ThêoBR [3] 

for long term.  The Thêo portion characterizes to 75% of a data run, whereas straight ADEV characterizes 

to only 20% [1].  To illustrate, ThêoH plots are generated from measurements for the oscillators tested 

while powered on for a data run of only three-second duration.  Fig. 1 shows the measurement setup.  

Dynamic ThêoH is a waterfall graph where each 3 s run is parsed into ten sequential time segments, then 

ThêoH is computed for each segment and displayed as another waterfall plot, as shown in Fig. 2.   

 

Such plots provide a quick assessment of how long and to what degree it takes an oscillator to settle down 

to a consistent stability after being turned on.   

 

We will use an example in which the emitter is repeatedly turned on for 3 s every 60 s.  In addition to the 

frequency that is traced during start-up, discussed above, an important criterion is the start-up frequency 

reproducibility and its characterization, described next. 

 

 
Figure 1.  The device-under-test (DUT) is a temperature compensated oscillator with 

quartz or MEMs resonator. 
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Figure 2.  Dynamic ThêoH plot. Surface smoothness is a general measure that the test 

oscillator has attained steady-state operation after having been powered on. 

 

 

III. FREQUENCY PREDICTION ERROR FOR MULTIPLES OF s 

We wish to estimate an oscillator’s frequency at its next turn-on.  While there are any number of different 

ways to make this estimate based on a history of actual measurements [4], we construct a 2-sample 

frequency prediction to mimic the desirable properties of noise identification, convergence, convenience, 

and acceptance provided by the 2-sample standard variance, better known as the Allan variance, and its 

square root, ADEV [5].  The two-sample, no dead-time Allan variance has widely accepted statistical 

properties; however, limited-live applications have substantial dead time.   

Fractional-frequency error yon(t) and its prediction at yon(t+s) is based on the reasonable assumption that 

any given manufacturer wants yon(t+s) to be the same value as measured values of yon(t).  Since yon(t+s) 

= (1+)yon(t), where  is a random variable, we also expect the average 
1

1
( )

N

on s

n

y t n
N




  to be dependent 

on N, i.e. nonstationary, without a central limit, thus, unfortunately of little or no practical use in the 

estimate (designated by “^” as ˆ ( )on sy t  ).  The most efficient method for random-walk noise predicts 

that ˆ ( ) ( )on s ony t y t  , the last measured value of yon.  The variance of this expectation can be written as 

a first difference: 

 
22 ˆ( , ) ( ) ( )on s on s ony t y t     

 Eq. 1 

where < · > denotes an ensemble average based on first differences up of yon.  Like AVAR, (Eq. 1) is the 

variance of an increment and converges for random-walk noise.   

 

DEFINITION: Samples of the fractional frequency-error function y(t) occur at a rate fs having an interval 

0

1

sf
  (setup shown in Fig. 1).  Given a sequence of fractional frequency errors {yn : n=1,…,My} 

with a sampling period between adjacent measurements given by 0, we define the m0-average 

fractional-frequency deviate as 
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where yn = y(t), with n = t/0 starting from a designated origin t0 = 0.  Define psi-variance from the 

space of all possible 2-sample increments: 

 
2

2 ( , ) ( ) ( )on on

y on s sy t y t
        

 Eq. 2 

 

where < · > denotes an ensemble average and ( )on y t
  is the mean frequency over duration on = m0. Fig. 

1, top, shows the sampling function associated with 
2
(on, s) acting on {yn}.  on is called the 

averaging or live interval, s - on is the oscillator’s dead time.  Note that 
2
(on, s) becomes twice the 

two-point standard (Allan) variance y
2
(s) if on = s. 

 

 

IV. RELATIONSHIP OF Sy(f) TO -VARIANCE 
 

For computing the usual power spectrum, we start with Parceval’s theorem: 

 
22

1

2

( , ) 4 ( ) ( )
h

s

f

on s yH f S f df


   
 Eq. 3 

where H(f) is the frequency-domain response of the time-domain sampling function of 
2
(on, s) shown 

at the top of Fig. 1.  Sy(f) of the emitter is multiplied by the FT squared of the sampling function to obtain 

|H(f)|
2
.  We obtain: 
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 Eq. 4 

where r = t/s (starting from origin t0) is a counting index r = 1,2,3… representing the r
th
 data run of 3 s 

duration. 

The f-domain response function |H(f)|
2
 is shown in Fig. 3.  This response is +20 dB/decade, like the Allan 

variance for low frequencies up to the peak at fs = ½.  There is insufficient roll-off above this peak for 

which white and flicker of phase noise types will cause the level of 2 ( , )on s  to depend on fh in (Eq. 4).  

This normal “picket-fence” response is not a concern as of yet, since DUT random walk FM (and drift) 

are likely to dominate limited-live applications, as discussed in Section III. 
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Figure 3.  Frequency response |H(f)|
2
 of 2 ( , )on s   in (Eq. 3), ons, r = 1. 
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White FM noise can be contributed by the measurement system at short term. 

 

Scaling to ½
2
(on, s) normalizes results to equal y

2
(s) if on s , i.e.,zero dead-time.  Furthermore, 

the zero-dead time Allan and ½
2
(on, s) respond identically to White FM noise having equal frequency-

spectral coefficient ho [6].   Table 1 compares the transform to frequency spectrum Sy(f) of ½
2
(on, s) 

andy
2
(s).  Flicker noise is given in terms of y

2
(s) to simplify the formula.  The Table evidences the 

bias on y
2
(s) due to limited-live operation of the DUT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We observe the intrinsic level of random-walk or drift that properly characterizes the DUT in “longer 

term” (as  approaches its maximum around 2 s using ThêoH).  Since fast-frequency measurements mask 

or are not sensitive to DUT-based PM-noise types that would appear as “super white” FM-noise in y(t) raw 

data, ½
2
(on, s)  is never biased by this noise when compared to AVAR.  Since it never occurs the 

unbiased White-FM-transform coefficient h0, to Sy(f) does not depend on a high-cutoff, fc = 1/(2on), as 

indicated in Table 1.  Random walk (and drift) are slightly biased (depends on r = s/on [7]) and the 

positive-slope is the same for 
2
(on, s) and AVAR, y

2
().  It is important to note that flicker-FM noise 

using dead-time AVAR, here 
2
(on = const., s = ), will appear as White-FM noise [8]. 

 

It remains to be determined whether Flicker-FM can be reliably detected by unraveling -variance to 

obtain AVAR.  However, this distinction is usually unimportant to Doppler-relevant applications. 
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Figure 4.  128 sets of raw fractional frequency measurements.  Set 1 is the first series of 

y(t), and the oscillator is first turned on from a “cold” start.  Each trace is 3 s worth of 

data; repeating every 60 s during which the oscillator is turned off. o = 16.384MHz. 

 

 

V. TIME DOMAIN MEASUREMENTS OF OSCILLATORS 

 
We use a commercial miniature OCXO and TCXO at 16.384 and 26 MHz, respectively, as DUTs for an 

example.  Fig. 4 shows 128 raw y(on) data runs of 2 ms sampled measurements on top of each other.  At 

the very bottom, data set #1 starts the test oscillator.  One can see that the first four sets capture a larger 

set-to-set overall variation than the remaining 124.  In application, the oscillators are not cold-started but 

are in process, so the initialization sets such as 1-4 can generally be ignored.  We process individual runs 

of Fig. 4 using dynamic ThêoH, as described in Section II.  This is shown in Fig. 5 along with averages of 

ThêoH.  One can see that a consistent level of stability (drift + White FM) is acquired after about 60 ms.  

Measurements are an equispaced sequence of fast-frequency errors, y(t), and are not time-errors, x(t).  

Thus, measurement noise is White FM and not typified by PM noise during runs of on.  This is not 

especially undesirable and Fig. 5 shows measurement White FM in short-term, i.e., y() ∝ -1/2
. 

 

Using the averages of each data run, 3
( )on s

y t
  , we compute 

2
(on, s) using all runs.  Results are shown in 

Fig. 6, where we observe the level and rate of frequency reproducibility as a function of ns for each 

period in which the DUT is powered on.  This level and rate may or may not limit other application-

specific goals.  Likewise, with a given level and rate, one may be forced to use application strategies or 

improve emitter reproducibility to achieve goals.  Our finding is that there is no reliable method for 

estimating (on, s)  from y(), for ADEV. 
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Figure 5.  ThêoH deviation (top) and dynamic ThêoH (DThêoH ) deviation (bottom) for 

the OCXO and TCXO.  Note that the longest  for DThêoH corresponds to 1/10 of the 

longest  for ThêoH. 
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Figure 6. -deviation for an OCXO and TCXO. The minimum averaging time is s = 60s. 

 

 

VI. FREQUENCY DOMAIN MEASUREMENTS OF OSCILLATORS 
 

Phase noise L(f) is important during limited-live Doppler tracking.  L(f) is a convenient standard used to 

determine the error vs. range in offset-f, proportional to emitter velocity, as set by the emitter.  L(f) is 

computed from the fast-frequency measurements obtained from Fig. 1.  For a given on data run sampled 

at t0, the frequency spectrum Sy(f) is obtained from the discrete FT of the series [6]: 
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j m fr

r

Y m f y r e
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 Eq. 5 

where f = 1/on.  The one-sided spectral density of y(t) is computed by adding the squares of the real and 

imaginary components of  Y and dividing by the duration on of the data run: 
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 Eq. 6 

 
with BW = 1 Hz and RBW = f.  Converting to L(f), one uses [6]: 
 

2

0

2

1 1
( ) ( ) ( )

2 2 ( )
yL m f S m f S m f

m f



    

  Eq. 7 
 
and L(f) is plotted on log-log scales. 
 
In practice, the noise of each limited-live spectrum affects Doppler-track error.  Averages of limited-live 

estimates of L(mf) are shown in Fig. 7 for the OCXO and TCXO.  A word of caution—L(f) derived from 
fast-frequency measurements in setup Fig. 1 will not be sensitive to white and flicker PM noise, as 
mentioned earlier.  This is not problematic to most limited-live characterizations, because the measurement 

high-frequency cutoff (BW) is fc = 1/(20), and 0 is of the order  10
-3

 in this case.  Thus L(f) is not 
computed beyond f of several hundred hertz, even in the best case. 
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Figure 7. L(f) for the OCXO and TCXO from dead-time measurements. 

 
For future studies, characterization of limited-live oscillators in this paper will be used while such 
oscillators are subject to temperature and vibration stresses.
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